To optimally display anatomy for image presentation, the transducer must be manipulated. Transducer manipulation can be broken down into 5 basic movements: sliding, rocking, tilting, rotating, and compression. Combining these movements allows for smooth scanning motion and anatomy visualization. The specific manipulations for each view represent general recommendations that may vary in individual patients depending on the position of their heart in the chest.

The purpose of this document is to describe these movements. Performance of echocardiography protocols or image acquisition may be found in other resources.

The transducer indicator is displayed as an icon on the monitor. In this document, it is assumed that the icon is displayed on the right side of the monitor unless otherwise stated.

Illustrations in this document are simplified for demonstration purposes only and are not true anatomic representations.

Sliding

Slide or move the transducer on the body to find the best window or to move to a different area of the body in any direction.

For example, this illustration shows sliding from the location of the parasternal view to the approximate location for the apical view.
Rocking

Rocking the transducer toward the indicator or away from the indicator allows centering of the area of interest or extending the field of view in one direction or the other, i.e., cephalic/caudal or right/left. This is also called in-plane1 motion. ("In-plane" refers to any motion that is in the same plane as the field of view.) Rocking always refers to motion in the same plane as the field of view.

![Rocking toward the indicator](image1)
![Rocking away from the indicator](image2)

Tilting

Tilting the transducer from side to side allows other planes in the same axis to come into view without sliding the transducer on the body. This is also called cross-plane1 motion. ("Cross-plane" refers to any motion that is perpendicular to the visualized plane.) Tilting always refers to motion that is perpendicular to rocking. This way an area of interest may be entirely swept through for evaluation. The tilting motion allows visualization from cephalic to caudal or right to left depending on the orientation of the transducer as shown in the illustrations.

For example, in the parasternal short axis view, tilting the transducer allows imaging from the base to the apex of the heart.

![Tilting from cephalic to caudal](image3)
![Tilting from right to left](image4)
Rotating

For echocardiography, rotation depends on the viewing window.

For example, in these parasternal views:

Rotating the transducer approximately from 11 to 2 o’clock switches correctly from long to short axis. The long axis of the heart is visualized with the transducer indicator at approximately the 11-o’clock position pointing in the direction of the right shoulder. The short axis of the heart is visualized with the transducer indicator at approximately the 2-o’clock position pointing in the direction of the left shoulder.

Compression

Compression may be used to make adequate contact between the transducer face and scanning surface of the patient, thus allowing uniform movement and improving image quality. For example, the illustration shows compression being used for the subcostal (subxyphoid) view. The ALARA (as low as reasonably achievable) principle for acoustic power output can be paraphrased and applied to compression: as little as reasonably achievable. The sonographer must always keep in mind the patient’s comfort level.
Acknowledgments

This technical bulletin was developed from the original “Transducer Manipulation” Technical Bulletin originated by the members of the sub-committee of the AIUM Technical Standards Committee for the Standard Presentation and Labeling of Ultrasound Images standard:

Chair, Karen Ophir, BS, RDMS
Eileen Nemec, RDMS
Terry J. DuBose, MS, RDMS

Original “Transducer Manipulation” Technical Bulletin subcommittee members:

Chair, Karen Ophir, BS, RDMS
Sharon Shechter, BS, RDMS RVT
Terry J. DuBose, MS, RDMS
Larry D. Waldroup, BS, RDMS, ROUB

Thanks go to other AIUM and American Society of Echocardiography (ASE) members who assisted in the preparation of the bulletin:

Richard G. Brebner, BS, RDMS, RDCS, RVT (AIUM, ASE)
Pam Burgess, RDCS, RDMS, RVT (ASE)
Richard Meyer, MD (AIUM, ASE)
Valerie Newberry (ASE)
Elizabeth Patterson, RDCS, RDMS (AIUM, ASE)
Miguel A. Quinones, MD (ASE)
David Sahn, MD (AIUM, ASE)
Andrea Skelly, MPH, RDCS, RDMS (AIUM, ASE)
Pamela Wilson (ASE)
Ellen Flynn, BS, RDCS
Denise L. Zang, MBA

A grateful acknowledgment goes to Victoria Alderman, MA, RDMS, who volunteered her time to prepare the original illustrations modified for this bulletin.

Thanks to Donna M. Kepple, RDMS, and Dale Cyr, MBA, RDMS, RDCS, for their encouragement and help.

References

Bibliography

© Copyright 2005, American Institute of Ultrasound in Medicine.

Copies of this Technical Bulletin are available for $3.00 for AIUM members and $6.00 for nonmembers, plus shipping and handling. Contact the AIUM Publications Department for shipping and handling rates.

American Institute of Ultrasound in Medicine, 14750 Sweitzer Ln, Suite 100, Laurel, MD 20707-5906 USA. Phone: 301-498-4100, 800-638-5352; e-mail: publications@aium.org; website: www.aium.org.